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COMMENT 

Some comments on the application of analytic 
regularisation to the Casimir forces? 

J R Ruggiero$§ A Villani/l and A H Zimermanl 
$Departamento de Analise NumCrica e Estatistica do IBLCE de SLo Jose do Rio Preto, 
Brasil 
6Instituto de Fisica, Universidade de SBo Paulo, Brasil 
TInstituto de Fisica Teorica, SBo Paulo, Brasil 

Received 28 March 1979 

Abstract. Expressing the generalised zeta function X n  w,” in terms of the ‘partition 
function’ 8, e-awn, we show in this paper why we obtain the same answer for the Casimir 
effect (in many physical situations) if we use, alternatively, the analytic continuation 
procedure for the zeta function or  take the first derivative of the above partition function 
and make LY + 0’ with the neglect of all pole terms in (Y = 0. 

1. introduction 

In a previous paper (Ruggiero et a1 1977) we have discussed, by using procedures 
similar to those presented by Gelfand and Shilov in their book (1962), the application of 
analytic regularisation to the Casimir effect (Casimir 1948, Fierz 1960, Boyer 1968). In 
particular, the exponential cut-offs used by these last authors were interpreted by us as 
analytic regulators. 

More explicitly, by considering the zero-point energy of the system: 

where n denotes all the relevant quantum numbers of the system, the prescription 
which we have used in order to obtain the finite part of the left-hand side of equation 
(1.1) was to subtract all the poles of the corresponding right-hand side. This was done 
by considering a as an analytic regulator for Re a > 0 and by imitating a similar 
situation which occurs in quantum electrodynamics where we perform analytic 
regularisation in the manner of Gelfand and Shilov (1962). (For more details see 
Bollini et a1 (1964).) 

We have also considered in our previously quoted paper analytic regularisation by 
means of the use of generalised zeta functions: 

(1.2) 
h 
2 ,  
- 1 m i s .  
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The physical zero-point energy would be obtained by performing the analytic 
continuation of expression (1.2) up to s = -1. A similar suggestion has been made by 
Hawking (1977). As examples, we have discussed the Casimir effect in rectangular 
systems, in one, two and three dimensions (the generalisations to any dimension being 
trivial from our paper) and in a system of two conducting parallel plates. We have also 
studied the meaning of equation (1.2) from the point of view of analytic continuation of 
the Green functions for the system. 

As an interesting by-product, it came out that the analytic regularisation by means 
of generalised zeta functions produced values for the zero-point energies which did not 
present poles at s = -1, giving automatically finite results, at least for the examples 
which we have treated. It was not necessary to do further subtractions, as happens in 
quantum field theory (Bollini et a1 1964). 

It was also seen that the finite parts, in the examples treated by us, came out to be the 
same by using the two methods described above, but we did not discuss in our previous 
paper why the results are the same. A similar problem appears in the study of the 
moments Tr(H-')), where H describes the Hamiltonian of a non-relativistic particle in 
the s-state in a spherical potential V(r)  (short range and analytic in r ) .  Buslaev and 
Faddeev (1960) have studied the moments Tr(H-') for s s 0 by means of an analytic 
continuation of the generalised zeta function. Percival(l962) has used the expansion of 
the partition function Z(--p) = Tr(ePPH), and by taking successive derivatives of it with 
respect to p and letting p -> O+, he obtained the different energy moments for integer 
s s 0; as the moments come out divergent for p + O', Percival has defined a new 
derivative operator which amounts to taking the usual derivative (of any order) and 
subtracting from it all the singular terms for p + 0'. In this way he obtained the same 
results as Buslaev and Faddeev. By expressing the generalised zeta function in terms of 
the partition function it is simple to see why the two procedures give the same answer 
(Pimentel and Zimerman 1978). 

The same method will be used in this paper. 
We can express the generalised zeta function C n w i S  in terms of the 'partition 

function' Z, e-wnx by means of a Mellin transform, valid for Re s > a ( a  is some real 
number), and can do the analytic continuation for Re s < a (see Gelfand and Shilov 
1962). This method is essentially Hadamard's method for obtaining the finite part of an 
integral. 

Let us recall that, as is well known (Titchmarch 1951), the usual Riemann zeta 
function, when considered as a finite part on a Hadamard integral, satisfies the usual 
functional equation relating l ( s )  and l(1- s) (for more details see the discussion in 
appendix A of our previously quoted paper). 

In this paper, our discussion will be centred around two examples: the Casimir effect 
in the one-dimensional box and in the three-dimensional rectangular system. The 
generalisation for other cases will not present any difficulty. 

2. The one-dimensional box 

Let us consider a massless scalar field in a one-dimensional box of length L, with the 
boundary condition that the field is zero at the ends; the eigenfrequencies are given by: 

T C  
w, =-n n = 1,2,  . . . (2.1) L 
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where c is the wave velocity. The zero-point energy is: 

h "  1 rrhc c U,,=-- 2 n 
n = l  2 L n = l  

which is infinite. By introducing the exponential cut-off: 

or 

where Bm are the Bernoulli numbers: 

Bo= 1 B -  1 - -2 1 B2=:. . . . 
According to our prescription the finite part is obtained by excluding in equation 

(2.4) all the pole terms for a + O+; then 

Now we have the identity: 
. .m  

where n is a general index. In the present case, for w, given by equation (2.1), equation 
(2.6) can be rewritten as: 

or 

where [(s) is the usual Riemann zeta function defined by: 

for Re s > 1. Let us note that we have: 
1 

Jom xS-' Z l (x)  dx = x"-'Zl(x) dx + I,, I: xS-' Zl(x)  dx. (2.9) 

The second term on the RHS of equation (2.9) can be continued analytically for Re s S 1. 
Now the first term on the RHS diverges €or Re  s S 1 because of the bad behaviour of 

the integrand near the origin. Recalling that: 

1 " Bm &(x)=y--= 7 x m - l  e -1 m=om 
(2.10) 

where B, are the Bernoulli numbers, Hadamard's finite part is obtained by the 
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following procedure. For Re s > 1, we have: 

1 
xS- '  Z , ( x )  dx = - [ jol xS-l ( Z, (X )  

u s )  X 

The right-hand side of equation (2.11) presents a pole for s = 1, and can be continued 
analytically up to Re  s > 0. This will be the analytic continuation of the left-hand side of 
equation (2.1 1) for 0 < Re s < 1. Similarly, in order to continue up to Re  s < - 1, we use 
the expression (which is the analytic continuation in the region -2 < Re s < - 1) 

'[ jolxS-l(Zl(x)---B1--x Bo dx+-+-+- Bo Bi 
Tis) X B2 2! ) s - 1  s 2! ( s+ l )  

(2.12) 

As T(s) has a pole for s = -1, the second term of equation (2.9) will not give any 
contribution, while the analytic continuation of the corresponding first term, which is 
given by equation (2.12), will receive only a contribution from B2/2!(s + l)T(s) which 
for s = -1 gives I(-l) = -B2/2 and reproduces equation (2.5) through the use of 
equation (2.7). 

3. The three-dimensional rectangular box 

Let us now consider a scalar field in a three-dimensional box of volume V = L1L2L3, 
with the boundary condition that the field vanishes at the walls. 

The eigenfrequencies are 

with c = 1. 
By taking the exponential regularisation, i.e. writing 

and using the Poisson formula, we can write (see Lukosz (1971); also Ruggiero et a1 
(1977)): 
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with 

tm C,,,,,, _.. ,  m,=O means that in the sum mi = m2 = , . . = m, = 0 is excluded. 

terms, we obtain the regularised expression: 
By taking -a/aLu of equation (3.3) and making (Y -+ O+, after the neglect of all pole 

Consider now the generalised zeta function: 

Using equation (2.6), we have: 

with 

As before, we rewrite equation (3.6) as: 

(3.8) 

The second term on the RHS of this last equation is analytic in s, while the first is only 
convergent for Re s > 3, since Z3(x), by equation (3.3), has apole of third order in x = 0. 
For Re s > 3 we can write: 

1 '  [ lo' xS-' (Z~(X)-- dx+- A o ]  (3.9) 
s-3 

r ( ~ )  jo xS- l  Z3(x) dx = - 
r ( S )  X 

where A. is defined in equation (3.3). 
The right-hand side of equation (3.9) can be continued analytically up to Re s > 2, 

exhibiting a pole at s = 3. In this region it defines the finite part of the left-hand side of 
equation (3.9). 

In a similar way, the analytic continuation of the left-hand side of equation (3.9) in 
the region -2 < R e  s < - 1 is given by (with the A, defined in equation (3.3)): 

+-+-+-+-+-I Ao A i  A2 A3 A4 
s-3 s-2 s-1 s s + l  (3.10) 

For more details see the book of Gelfand and Shilov (1962). 
Expression (3.10) is well defined at s = - 1, since the pole at this point is cancelled by 

the corresponding one of r(s). As [r( - l)]-'= 0, the analytic continuation of equation 
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(3.6) at s = - 1 is exactly A4. In our previous paper, A4 was expressed in terms of the 
Epstein zeta functions (Epstein 1902, appendix B of Ruggiero et a1 1977). 

Let us remark that the analytic continuation using the method of Hadamard gives 
finite parts from divergent integrals. This is most easily seen by looking at equation 
(2.11). There we have added to the right-hand side the term 

with E + Ot which comes from the lower end of the integral. For Re s > 1, this is 
evidently zero, but for Re  s < 1 it is infinite. 

Therefore it is not surprising that, in the examples discussed by us, the zeta 
regularisation gives automatically finite results for physical values of s (although in 
some other examples we can obtain poles for physical values of this parameter, as 
happens in the case of second-order electromagnetic self-energy of a non-relativistic 
electron between two conducting parallel plates). 

Finally we would like to mention two recent preprints (Ford 1979, Toms 1979) 
which use the zeta function techniques in problems very similar to those discussed in our 
previous paper. 

They criticise the application of exponential cut-offs X n  e-awn (used by Casimir 
(1948) and Fierz (1960)) for the study of the Casimir effect in curved space, because of 
the ambiguity in the subtraction of infinite quantities. For this reason they prefer the 
use of zeta function regularisation which would be free of these ambiguities (see also 
Hawking 1977). 

From our point of view, if we interpret the parameter a as an analytic regulator 
(Re a > 0) in the ‘partition function’ X n  e-awn, then in order to obtain the finite part of it 
we subtract all the pole terms in (Y = 0. We have shown here in some relevant examples 
that this procedure is mathematically equivalent to the analytic continuation of the 
corresponding zeta function. 
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